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Abstract

Continuing earlier work, we apply the mean field method to the
world sheet representation of a simple field theory. In particular, we
study the higher order terms in the mean field expansion, and show
that their cutoff dependence can be absorbed into a running coupling
constant. The coupling constant runs towards zero in the infrared,
and the model tends towards a free string. One cannot fully reach
this limit because of infrared problems, however, one can still apply
the mean field method to the high energy limit (high mass states) of
the string.
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1. Introduction

The present work is the continuation of a program developed in a series of
earlier papers [1-7]. The main goal of this program was to study the sum of
planar graphs of a given field theory by first reformulating it as a two dimen-
sional local theory on the world sheet. This reformulation makes it possible
to do dynamical calculations using the mean field approximation. With the
help of this approximation, it was possible to show string formation in the
case of simplest of field theories, a scalar theory with a cubic interaction,
thus building a bridge between field theory and the string theory.

Although we believe that a promising start has been made in addressing
an old and important problem [8], there are still many questions left to be
answered. To name a few, the world sheet parametrization was based on
light cone kinematics, with the resulting loss of manifest Lorentz covariance.
The meanfield method has so far not been applied to more realistic theories
than the scalar cubic theory. Also, since this method can be formulated as an
expansion in inverse powers of the transverse space dimensions, the expansion
parameter may not be all that small and its convergence is questionable.

In this article, we will address another problem, which is as important
as any listed above. In doing so, we will also indirectly shed light on the
problem of convergence of the mean field expansion. Both in constructing
the world sheet theory, and also in applying the mean field method, it was
necessary to introduce cutoffs. These were taken to be the spacings of the two
grids set up on the world sheet, or alternatively the corresponding cutoffs in
momentum space. Of course, ultimately one would like to get rid of them by
renormalizing the model [9]. However, in this case, renormalization is not a
completely straightforward matter. In particular, one is rather limited in the
choice of counter terms in the initial action. Nevertheless, it was shown in
references [4-7] that, by assigning a natural cutoff dependence to the original
parameters of the model, in the leading order of the mean field expansion,
the slope of the emerging string came out finite. One can then hope that
other physical quantities will also turn out to be cutoff independent.

As is well known, the cutoff dependence of a field theory is intimately
related to its scaling properties. The renormalization group equations are in
general based on this connection. In the world sheet theory we are studying,
there is also a connection between scaling and Lorentz invariance. This is
because the world sheet parametrization we are using is based on the light
cone variables, with the resulting loss of manifest Lorentz covariance. In this
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picture, the boost along the special light cone direction is implemented by the
scaling of the world sheet coordinates. It then follows that scale invariance is
a necessary (but not sufficient) condition for Lorentz invariance. We therefore
see that the questions of cutoff independence and Lorentz invariance are
connected; the necessary (and for cutoff independence, sufficient) condition
for both is scale invariance.

This paper is mainly devoted to the study of scaling behaviour and the
cutoff dependence of the world sheet model that represents the massless scalar
with cubic interaction. The tool we will use will be the mean field expansion,
which is an expansion in inverse powers of D, the dimension of transverse
space. In order to make this paper self contained, in section 2, we will briefly
review the derivation of the world sheet model corresponding to the massless
scalar field theory with cubic interaction, and in section 3, we will discuss
the application, in the leading order, of the mean field method to the model.
Within this approximation, we will be able to demonstrate string formation
on the world sheet. We will also discuss how the two cutoffs are introduced
on the world sheet, and how various fields and parameters transform under
scaling, and how this is related to their cutoff dependence. The material
covered in these two sections is mostly a review of the earlier results [1-6].

A crucial step in the derivation of the results reviewed here was the min-
imizing of the ground state energy. Since the ground state energy is cutoff
dependent, one may wonder how much a result such as string formation de-
pends on the regulation scheme used. In section 4, we generalize the sharp
cutoffs used so far to a smooth cutoff with an two arbitrary profile functions.
We show that so long as the profile functions are positive, the result about
string formation remains valid. This section, as well as the rest of the article,
contains material that is mostly new.

The previous sections only dealt with the leading order in the expansion
in powers of 1/D. The higher order terms in this expansion can be computed
in two steps: In the first step, we compute an effective action by integrating
over the field q, the world sheet field that represents the transverse momenta.
In section 5, we show that this effective action can be written as a generalized
sigma model in a new dynamical field φ. We then expand this action simul-
taneously in powers of 1/D and in the number of derivatives with respect to
the world sheet coordinates, and we determine explicitly the leading term of
this expansion, which provides the potential energy for φ, as well as the next
term, which provides the kinetic energy. These terms were already derived
in references [5,6]. The field φ plays an important role in the model; for
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example, a non-vanishing ground state expectation value for φ generates a
non-vanishing string slope. We also investigate the cutoff dependence of the
action, and show that, up to logarithmic corrections, the dependence on the
powers of cutoff is what is expected on the basis of simple power counting.

The next step of the program is to use this sigma model as the starting
point for computing higher order contributions. Here, however, we face the
unusual situation of having an initial action that is cutoff dependent. Of
course, higher order contributions will generate further cutoff dependence.
This brings up the question, taken up in section 6, of how to renormalize the
model, so that observables become cutoff independent. In standard field the-
ory, divergences are normally cancelled by introducing counter terms in the
original action. Here, since φ started life as an auxilliary field in the original
action, we do not have the freedom to introduce arbitrary counter terms. Be-
fore trying to answer this question, we can ask even a more basic one: What
are the observables? It is natural to assume that in a theory in flat space, all
observable quantities can ultimately be expressed in terms of Lorentz invari-
ant ones. In a covariantly formulated theory, this is a trivial requirement, but
here, the situation is different, since it is not at all straightforward to identify
Lorentz invariant objects. Since Lorentz invariance implies scale invariance,
we impose on the observables the more modest requirement of scale invari-
ance. Again, by simple power counting, scale invariant objects are shown to
have no power dependence on the cutoff. Consequently, Lorentz invariance
means no dependence on powers of the cutoff.

However, there still remains a logarithmic dependence on the cutoff, to
which we turn next. By means of a simultaneous scaling of both the coor-
dinates and the field φ, we transform the action into a new form, which no
longer has power dependence on the cutoff. In the new action, the original
expansion parameter is replaced by λ2, which is inversely proportional to the
log of the cutoff. Also, terms with more than two derivatives are suppressed
by inverse powers of the same log of the cutoff. We note that, depending on
the cutoff, λ2 could be smaller than 1/D and thus provide a better parameter
of expansion.

In section 7, we consider the perturbation expansion based on the action
above and on an expansion in powers of λ. We show that the higher order
contributions do not change the cutoff structure of the initial action in any
substantial way. The logarithmic dependence of both λ and of the terms
with more than two derivatives remain unmodified.

We conclude section 7 with a discussion of these results from the point of
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view of the Wilsonian renormalization scheme. Starting with an initial cutoff
Λ, we try to reduce it to a much lower value µ, by continually integrating over
the high end of the spectrum. As we do this, the coupling constant, which
is inversely proportional to ln(Λ/µ), runs towards zero, and the model tends
towards a free string. As expected, this limit, the infrared fixed point of the
model, is scale invariant and cutoff independent. However, this result rests
on various approximations, which are valid only in the ultraviolet regime.
Consequently, it is not possible to go all the way to the infrared and reach
this fixed point. We argue, however, that by keeping µ large enough, we can
probe the asymptotic spectrum of the string, but not the lower lying states.
The last section summarizes our conclusions.

2. The World Sheet Action

This and the next section are devoted to a review of the results obtained
in Refs.[1-6]. The basic idea is first to represent the sum of planar graphs
of a given field theory as a local field theory on the world sheet, and then
use the mean field approximation to show string formation. Starting with a
world sheet parametrized by the light cone variables

τ = x+ = (x0 + x1)/
√

2, σ = p+ = (p0 + p1)/
√

2,

a general planar Feynman graph for the massless scalar theory with cubic
interaction in D + 2 dimensions can be represented by a bunch of solid lines
(Fig.1)[10]. One associates a particular transverse momentum qn with the
n’th line, and two adjacent lines n and n + 1, with momenta qn and qn+1,

p +σ

τ

Figure 1: A Typical Graph
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represent the light cone propagator

∆(p) =
θ(τ)

2p+
exp

(

−iτ p2

2p+

)

, (1)

where p = qn − qn+1. A factor of g is inserted at the beginning and at the
end of each line, where the interaction takes place.

The light cone Feynman rules sketched above can be reproduced by a
local field theory on the world sheet. Here, we summarize the results, and
refer the reader to [1-6] for the detailed derivations. The transverse momenta
q, originally defined only on the solid lines, can be promoted to a local field
q(σ, τ) over the whole world sheet. If we think of the solid lines as boundaries
on the world sheet, and the rest as the bulk, q(σ, τ ) satisfies the equation

∂2
σq(σ, τ) = 0, (2)

in the bulk, and the Dirichlet boundary condition

∂τq(σ, τ) = 0 (3)

on the solid lines, since the q flowing through a solid line is constant (τ inde-
pendent). With the help of a Lagrange multiplier y(σ, τ), both the equations
of motion and the boundary conditions are incorporated into the following
action:

Sq =
∫ p+

0
dσ
∫

dτ
(

−1

2
q′2 + ρy · q̇

)

, (4)

where a dot represents the derivative with respect to τ and a prime the
derivative with respect to σ. The function ρ is defined to be the sum of
Dirac delta functions with support on the solid lines.

In this expression for Sq, one has to integrate functionally not only over
q and y, but also over the positions and the lengths of the solid lines. This is
best accomplished by introducing a two component fermion ψi(σ, τ), i = 1, 2,
and its adjoint ψ̄i, and setting

ρ =
1

2
ψ̄(1 − σ3)ψ. (5)

The action for the fermions is

Sf =
∫ p+

0
dσ
∫

dτ(iψ̄ψ̇ −Dgψ̄σ1ψ). (6)
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Figure 2: Solid And Dotted Lines

To see clearly how this works and to avoid singular expressions, it is best to
discretize the sigma coordinate into segments of length a. This discretization
is pictured in Fig.2 as a collection of parallel line segments, some solid and
some dotted, spaced distance a apart. The boundaries are marked by the
solid lines, associated with the i = 2 component of the fermion, and the bulk
is filled by the dotted lines, associated with the i = 1 component. The first
term in Eq.(6) represents the free propagation of the fermion, tracing a solid
or a dotted line, and the second term, which converts the dotted line into a
solid line or vice versa, represents the interaction. We have scaled the cou-
pling constant g by the dimension of the transverse space D in anticipation of
the large D limit, discussed in the next section. Finally, integrating over the
fermion field is then the same as summing over the location and the length
of the boundaries.

There is one more ingredient needed to complete the world sheet action.
In Eq.(4), the part of the integral over y that has support in the bulk (dotted
lines) diverges, since the integrand is y independent in this region. To avoid
this problem, we add a Gaussian term to action which cuts off the divergence:

Sg.f =
∫ p+

0
dσ
∫

dτ
(

−1

2
α2ρ̄y2

)

. (7)

Here α is a fixed parameter, of which we will say more later on, and ρ̄ is
defined by

ρ̄ =
1

2
ψ̄(1 + σ3)ψ, (8)

and it is complementary to ρ: It vanishes on the solid lines and has support
only in the bulk. In fact, on the world sheet regulated by the grid, one can
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set
ρ+ ρ̄ = ψ̄ψ → 1/a. (9)

Finally, the complete world sheet action is given by

S = Sq + Sf + Sg.f

=
∫ p+

0
dσ
∫

dτ
(

−1

2
q′2 + ρy · q̇ − 1

2
α2ρ̄y2 + iψ̄ψ̇ −Dgψ̄σ1ψ

)

. (10)

An important symmetry any light cone action must satisfy follows from
invariance under the boost along the special direction we have labeled as 1.
This boost translates into the scaling of the world sheet coordinates by

x+ → ux+, p+ → up+,

and under which the fields transform as

q(σ, τ) → q(uσ, uτ), y(σ, τ) → y(uσ, uτ),

ψ(σ, τ) →
√
uψ(uσ, uτ), ψ̄(σ, τ) →

√
uψ̄(uσ, uτ). (11)

The world sheet action given above is not invariant under this scaling, unless
the constants g and α2 are also scaled according to

g → ug, α2 → uα2. (12)

Scale invariance is also violated by the two cutoff parameters needed to regu-
late the model. We have already introduced one of them, a, the grid spacing
in the σ direction; in order to regulate the integral over q, we will need also
to discretize the coordinate τ , with a grid spacing a′. To preserve scale in-
variance, at least formally, these two cutoff parameters must also scale like
the coordinates:

a→ ua, a′ → ua′. (13)

All these definitions are somewhat formal, and there is real danger of
violation of scale and hence of Lorentz invariance. We will see later that, at
least within the framework of the meanfield approximation, physical quan-
tities, which are by definition cutoff independent, are also scale invariant.
Although this is not a complete proof, it provides support for the Lorentz
invariance of the whole approach. We will therefore start with the basic as-
sumption that all the scale invariant quantities formed out of the parameters
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α, g, a and a′ are finite (cutoff independent), so that there is really only one
independent cutoff, a or a′, with the scale invariant ratio

a/a′ = m2. (14)

fixed at a finite value. We also note that m, which has the dimensions of
mass, is the only dimensionful scale invariant parameter in the problem. It is
therefore a natural candidate for a Lorentz invariant mass parameter. We will
see later that the slope of the dynamically generated string is proportional
to 1/m2.

From the remaining parameters g and α, we form two new scale invariant
parameters by

ᾱ2 =
a′2

a
α2, ḡ = a′ g. (15)

For convenience, we have also made them dimensionless, which can always
be achieved by multiplying by appropriate powers of m. As the cutoff pa-
rameters a and a′ go to zero, in addition to m, we will keep ḡ and ᾱ fixed at
a finite values. If we can then show that physical quantities can be expressed
solely in terms of these three parameters, their finiteness and scale invariance
will follow.

Before closing this section, we would like to note that in addition to the
coupling constant ḡ, an extra parameter ᾱ appeared. By paying attention to
the integration measure in the version of the model with discretized coordi-
nates, it is possible to argue that this parameter should be fixed at

ᾱ2 =
1

4π
.

However, since the exact value of ᾱ will not of any importance in what follows,
we will leave it undetermined.

3. The Meanfield Expansion

The idea behind the meanfield approximation is to recognize that Eq.(10)
is the action for a vector model, which can be solved in the largeD limit. One
first introduces new fields for the scalar products such as y · q̇ and y2 in order
to cast the action into an expression proportional to D, the dimension of the
transverse space, and then the large D limit is taken by the saddle point
method [11]. Here, we choose instead an equivalent but simpler approach.
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Let us add the following term to S of Eq.(10):

∆S =
∫ p+

0
dσ
∫

dτ
(

Dκ
(1

2
ψ̄(1 − σ3)ψ − ρ

)

)

. (16)

This term merely enforces the definition of ρ through the Lagrange multiplier
κ. We will use the meanfield method to compute the ground state expectation
value

ρ0 = 〈ρ〉
of ρ. It was argued in references [2-7] that a non-zero value for ρ0 signals a
new phase of the underlying field theory, where the solid lines (boundaries)
form a condensate on the world sheet. In contrast, the original perturbative
phase corresponds to ρ0 = 0.

The meanfield calculation is simplified by choosing a configuration of
the world sheet with the σ coordinate compactified with periodic boundary
conditions at σ = 0 and σ = p+, and the total transverse momentum p

set equal to zero. This configuration has the advantage of being translation
invariant in both σ and τ directions, so that both ρ0 and

κ0 = 〈κ〉

can be taken to be constants independent of σ, τ . Replacing ρ, κ by their
constant expectation values in Eq.(10), the integration over y is easily done,
with the result,

S + ∆S → S̃q + S ′ + S̃f ,

S̃q =
∫ p+

0
dσ
∫

dτ
(

−1

2
q′2 +

1

2
β2q̇2

)

,

S̃ ′ =
∫ p+

0
dσ
∫

dτ (−Dκ0ρ0) ,

S̃f =
∫ p+

0
dσ
∫

dτ
(

ψ̄
(

i∂τ −Dgσ1 +
1

2
Dκ0(1 − σ3)

)

ψ
)

, (17)

where

β2 =
ρ2

0

α2ρ̄0
. (18)

It is clear that a non-zero value for ρ0 results in a non-zero string slope α′:

α′2 = β2/π2, (19)
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provided that, as we shall later show,

ρ̄0 =
1

a
− ρ0

is positive, which is necessary for this equation to make sense. This simple
argument shows that, independent of any approximation scheme, a non-zero
value for ρ0 leads to string formation. Whether ρ0 is non-vanishing is a
question of dynamics. We will compute below the energy of the ground state
of the system, using the meanfield approximation, and we will find that it is
minimized by a non-vanishing value of ρ0. The energy of the ground state
E0, which follows from the action given by Eq.(17), consists of three pieces:

E0 = Eq + E ′ + Ef , (20)

where Eq, E
′ and Ef are the contributions of S̃q, S̃

′ and S̃f respectively.
Since κ0 and ρ0 are constants,

E ′ = Dp+κ0ρ0. (21)

It is also easy to compute Ef . After discretizing σ in steps of length a, the
system represented by S̃q consists of N = p+/a number of decoupled one
dimensional Ising models. Diagonalizing the resulting two by two matrices,
we have

E±
f =

Dp+

2a

(

κ0 ±
√

κ2
0 + 4g2

)

. (22)

Clearly, the ground state energy is minimized by taking the minus sign in
front of the square root, so we will drop the plus sign from now on.

Now consider Eq. We shall only need the leading singular (cutoff depen-
dent) part of Eq, in the limit a, a′ → 0, with a/a′ = m2 kept fixed and finite.
In the next section, we will show that, in this limit

Eq →
Dp+

a′2
F (β2, m2), (23)

where β, (Eq.(18)), is cutoff independent (finite). It is important to establish
the finiteness of β, since the string slope α′, which we expect to be finite, is
proportional to β. We could argue this indirectly by observing that β is scale
invariant; however, it is worthwhile to carry out an explicit calculation. We
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first note that, from its definition on a grid with spacing a, ρ0 has a cutoff
dependence of the form 1/a. It is therefore natural to define

ρ0 = x/a, ρ̄0 = (1 − x)/a. (24)

Going back to Sf (Eq.(6)), it is easy to show that x represents the average
probability of finding a spin down fermion on the world sheet, which is also
the probability of finding a solid line. Therefore,

0 ≤ x ≤ 1,

Expressed in terms of x and ᾱ (Eqs.(18) and (24)), β now reads

β =
x

ᾱm2
√

(1 − x)
. (25)

Since the parameters ᾱ, x and m are all finite as a, a′ → 0, it follows that β
is finite, assuming that x 6= 1. From Eq.(19), the string slope also comes out
to be finite. This provides an after the fact justification for taking m2, the
ratio of two cutoffs, to be finite.

Putting together eq.(17),(22) and (23), we have the following expression
for the ground state energy:

E0 = Dp+
(

1

a′2
F (β2, m2) − 1

a
xκ0 +

1

2a

(

κ0 −
√

κ2
0 + 4g2

)

)

, (26)

and the ground state is determined by the saddle point equations

∂E0

∂κ0
= 0,

∂E0

∂x
= 0. (27)

The first equation gives

x =
1

2



1 − κ0
√

κ2
0 + 4g2



 , (28)

and eliminating κ0 in favor of x from this equation, the ground state energy
can be rewritten solely in terms of x (β is a function of x from Eq.(25)):

E0 =
Dp+

a′2

(

F
(

β2, m2
)

− 1

m2

√
x− x2

)

. (29)
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To determine x from the second equation in (27), we need to know the
explicit form of F . As might be expected, F depends on the cutoff scheme
used. We will compute F in the next section, using the cutoff scheme we
have introduced, but we will also consider a large class of related methods
of regulation. The idea is to see to what extent the results derived here
depend on the details of the cutoff scheme. We will show that the ground
state energy given by Eq.(29) above has always a minimum at some value of
x = xm 6= 0, for a large class of cutoff schemes. However, the precise value
of xm depends on the scheme used. We therefore conclude that xm 6= 0 is a
robust result, and string formation with non-zero slope takes place. On the
other hand, the parameter β (Eq.(25)) and therefore the string slope depends
on xm. This should not really cause concern, since we can argue as follows:
We take α′ or β as a given physical parameter, and for any given value of
xm, adjust the combination

ᾱm2

so as to satisfy Eq.(25). From this point of view, which is the standard idea
behind renormalization, ᾱ, m2 and xm are all parameters that depend on the
cutoff scheme in use; only the string slope is scheme independent.

4. Cutoff Dependence Of The Ground State Energy

In this section, we will investigate the cutoff dependence of the ground
state energy, first using two sharp cutoffs, and then replacing these by two
smooth profile functions. In particular, we want to see whether, independent
of the cutoff scheme used, the potential has a minimum at a non vanishing
value of x. Integrating over q in S̃q (Eq.(17)) gives

S̃q →
1

2
iD Tr ln

(

β2∂2
τ − ∂2

σ

)

, (30)

and the corresponding energy is

Eq =
D p+

2(2π)2

∫ Λ0

−Λ0

dk0

∫ Λ1

−Λ1

dk1 ln
(

β2k2
0 + k2

1

)

. (31)

Here, we have written the expression for the energy in momentum space, and
we have replaced the grid sizes a′ and a by the equivalent momentum space
cutoffs

Λ0 = π/a′, Λ1 = π/a.
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Also, strictly speaking, instead of an integral over k1, we should have a
discrete sum in steps of ∆k1 = 2π/p+. However, since we are only interested
in the leading cutoff dependence of Eq, we can safely replace this sum by an
integral.

As explained earlier, we would like to generalize the sharp cutoff used
above. Accordingly, we replace Eq.(31) by

Eq →
Dp+

2(2π)2

∫

dk0

∫

dk1 f0(k0/Λ0)f1(k1/Λ1) ln
(

β2k2
0 + k2

1

)

, (32)

where the profile functions satisfy the following conditions:
a) f0(y) = f1(y) = 1 for −1 ≤ y ≤ 1.
b) Both f0(y) and f1(y) are positive functions that rapidly go to zero as
|y| → ∞. Otherwise, they are arbitrary.

Let us now extract F from Eq according to Eq.(23), by considering the
limit Λ0,1 → ∞, with Λ0/Λ1 = m2 fixed. The result is

F =
1

8m2

∫

dy
∫

dzf0(y)f1(z)
(

ln(m2β2y2 + z2) + ln(Λ1)
)

. (33)

The term proportional to ln(Λ1) on the right hand side is independent of x
(β) and therefore it does not contribute to the equations (27) that determine
the ground state. In fact, it is an irrelevant constant which can be subtracted
from the ground state energy and we will drop it from now on.

To prove that E0 has a minimum at xm 6= 0, we have to first show that
F is an increasing function of x. From the above equation, it is clear that

∂F/∂β > 0,

and from Eq.(25),
∂β/∂x > 0,

and therefore
∂F/∂x > 0. (34)

For small enough x, we can approximate F by

F ≈ C0 + C1x, (35)

where the constant
C1 = (∂F/∂x)x=0

13



is positive. On the other hand, the second term in Eq.(29) for E0 is negative,
and for small x, it can be approximated by

−
√
x− x2/m2 ≈ −

√
x/m2.

Comparing this with (35), we see that for small enough x, the second term
dominates, and E0 is a decreasing function of x. On the other hand, for x >
1/2, the second term now becomes an increasing function, and consequently,
so doesE0. Since E0 is decreasing for small x and starts increasing at x = 1/2,
it must have a minimum for some xm in the interval 0 < x ≤ 1/2.

We note that the only property of f0,1 needed in the above argument is
their positivity. Therefore, we believe that the result is quite general, and
that it holds in any regulator scheme which does not violate the positivity
properties of the underlying field theory. Hence, string formation is a robust
result, which does not depend on the details of the regulation scheme used.
Although the existence of xm 6= 0 is thus assured, its value clearly depends
on the cutoff functions f0,1. We have argued at the end of the last section
that xm, ᾱ and m2 are all scheme dependent parameters; only the physical
parameter built out of them, α′, need be scheme independent.

Before closing this section, we would like to mention that the regulation
scheme used in reference [3-7] corresponds to taking the small x and therefore
the small β limit in Eq.(33), which gives the simple result,

F ≈ x

4πᾱm2
Λ2

0.

5. Sigma Model For φ

In this section, we will study higher order corrections to the leading mean
field approximation. This will involve evaluating S̃q (Eq.(30)), not just for a
constant β, as was done in the last section, but with β taken to be an arbitrary
function of the coordinates. Of course, this cannot be done exactly, so we
resort to a double power series expansion described below. Actually, we will
explicitly evaluate only the first two terms of this expansion. As for the rest
of the terms, we will only be interested in their dependence on the cutoff.
We first rewrite Eq.(30) as

S̃q →
1

2
DTr ln

(

−∂τφ∂τ − ∂2
σ

)

, (36)
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where we have renamed β2 as φ(σ, τ), and switched to Euclidean metric on
the world sheet. From now on, the world sheet action will be written using
the Euclidean metric. Next, we expand S̃q in powers of derivatives with
respect to the world sheet coordinates acting on φ:

S̃q =
∫ p+

0
dσ
∫

dτ

(

Uq(φ) +
∞
∑

s=1

Z(s)
q (φ) ∂2sφ

)

. (37)

To simplify the notation, we have written the above expansion in a somewhat
schematic form. The derivatives are with respect to σ or τ , and they could
be acting on several φ’s instead a single one as shown. Therefore, in reality,
several terms are collectively represented by a single Z(s)

q . The common
feature of these terms is that they go with 2s number of derivatives, which
is the only feature relevant in the following power counting arguments.

This well known expansion is frequently used in the effective potential
computations. In conjunction with the loop expansion, it makes the cal-
culation of at least the leading terms in the expansion possible [10]. From
our point of view, its chief advantage is that it keeps track of the cutoff de-
pendence of the action. By naive power counting, one would expect each
derivative to go with an inverse power of the cutoff. This is true, of course,
up to factors involving powers of the logarithm of the cutoff. These logarith-
mic factors, which will be the focus of our attention, will play an important
role later on.

In order to make progress, we need a second expansion, this time in
powers of 1/D. This is the same 1/D expansion on which the mean field
method is based, and it is accomplished by first splitting φ into two parts as

φ = φ0 + χ,

and then expanding the trace in Eq.(36) in powers of χ:

Tr ln
(

−∂τφ∂τ − ∂2
σ

)

=
∞
∑

0

(−1)n

n+ 1
Tr

(

−W (∆−1W )n
)

, (38)

where,
∆ = φ0 ∂

2
τ + ∂2

σ, W = ∂τχ∂τ .

For convenience of calculation, φ0 is taken to be a constant (σ, τ independent)
background field. We could set it equal to the ground state expectation value
of φ; however, we will keep it arbitrary for the time being. The general term
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in the expansion is the one loop graph with n + 1 external lines shown in
Fig.3.

The next step is to translate the derivative expansion into the momentum
space, by expanding the graph in Fig.3 in powers of k1, k2, · · · , kn+1 around
the point k1 = k2 = · · · = kn+1 = 0. Here, the k’s are two dimensional world
sheet momenta carried by the external lines in Fig.3. The term proportional
to Z(s)

q in Eq.(37) corresponds to a term with the total power 2s in k’s in this
expansion. Let us start with the first term of this expansion where all the
momenta are set equal to zero; this corresponds to Uq in Eq.(37). Setting all
the momenta equal to zero is the same as replacing the n’th power of χ in
the expansion (38) by

∫ p+

0
dσ
∫

dτ (χ(σ, τ)n) .

This leads to the following recipe: Compute

1

2
Tr ln

(

−φ0 ∂
2
τ − ∂2

σ

)

for a constant φ0, and in the result replace φ0 by φ(σ, τ) and then integrate
over σ, τ . The calculation with a constant background was already done in
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the last section, with β2 replacing φ0. The result can be expressed in terms
of F (Eq.(33)):

Uq(φ(σ, τ)) =
DΛ2

0

π2
F
(

φ(σ, τ), m2
)

. (39)

Here we note the quadratic dependence on the cutoff, which is all we need
in the future. Also, the distinction between Λ0 and Λ1 will not play any role
in our subsequent discussion. We will simplify writing by replacing Λ0,1 by
a generic cutoff Λ from now on.

Next we turn our attention to Z(1)
q , which is the term corresponding to

n = 1 in the series in Eq.(37). (The term n = 0 vanishes). The corresponding
graph is Fig.3 with two external lines. After evaluating this graph in the
presence of a constant background φ0, we expand to second order in the
external momentum k, and then set k = 0. This provides the two derivatives
acting on the two external χ fields. We can then replace the two χ’s by
φ’s, since these two differ only by a constant. Furthermore, repeating the
argument we have used in the case of Vq, after the graph has been evaluated,
we can replace φ0 by φ(σ, τ). The result, which was computed in references
[5-7], has a logarithmic dependence on the cutoff:

∫ p+

0
dσ
∫

dτ
(

Z1
q∂

2φ
)

=
D

64π
ln(Λ/µ)

∫ p+

0
dσ
∫

dτ φ−5/2
(

φ (∂τφ)2 + (∂σφ)2
)

.

(40)
A few comments are in order:
a) This expression involves the factor φ−5/2, which only makes sense if we
agree to expand it around a constant background φ0. In the last section,
we have identified φ0 with the ground state expectation value of φ, and
determined it by minimizing U(φ0). Although, as we have seen in section
4, the particular value of φ0 is somewhat dependent on the details how the
model is regulated, the important point is that it does not vanish. Since,
from Eqs.(18) and (19),

α′2 → φ0/π
2,

a non-zero φ0 means a non-zero string slope. We also note that a non-zero φ0,
in addition to a non-zero slope, generates a kinetic energy term for φ, and φ,
which was originally an auxilliary field, becomes dynamical. In what follows,
so long as it is non-zero, the particular value of φ0 is really not important.
b) µ is an infrared cutoff, needed to avoid infrared divergence. Since, so
far, we were only interested in the dependence on the ultraviolet cutoff, the
infrared cutoff did not matter. Later, when we reexamine the problem from

17



the point of view of the renormalization group, the basic idea will be to lower
the ultraviolet cutoff Λ to a lower value, and µ will be identified with this
lower cutoff.
c) By dimensional reasoning, it is easy to show that terms corresponding to
s > 1 in the expansion (37) go with inverse powers of cutoff:

Z(s)
q ∼ Λ2−2s. (41)

Therefore, one may suspect that these terms can be ignored. Actually, this
is misleading; the power suppression is compensated by the higher number
of derivatives. Later on, we will see that that these terms are suppressed not
by powers but by factors logarithmic in Λ.
d) We note that s = 1 is a special case. That is the only term in the expansion
that has a logarithmic dependence on the cutoff (see Eq.(40)):

Z(1)
q ∼ ln(Λ/µ). (42)

So far, we have been studying S̃q, the contribution of the field q to the
action. To this must be added the contribution of the fermionic sector,
represented by S̃ ′ and S̃f in Eq.(17) to arrive at the total action. After
integrating over the auxilliary fields κ, ψ and ψ̄, the resulting effective action,
Se, which now depends only on φ, can be expanded in powers of spatial
derivatives just as in Eq.(37):

Se =
∫ p+

0
dσ
∫

dτ

(

U(φ) +
∞
∑

s=1

Z(s)(φ)∂2sφ

)

. (43)

We have already computed U(φ); it is essentially given by the right hand
side of Eq.(29):

U =
Λ2

π2

(

F (φ,m2) − 1

m2

√
x− x2

)

,

where x is the solution to (see Eq.(25))

φ =
x2

ᾱ2m4(1 − x)
.

Note that just as Uq, U is quadratic in the cutoff Λ. The cutoff dependences
of Z(s) for s > 1 are also unchanged; they are given by simple power counting,
as in Eq.(41). Also, a simple calculation shows that there is no contribution
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to Z(1) from the fermionic sector. To sum up:
a) The terms in Eq.(43) have the same cutoff dependence as in Eqs.(41,42):
U is proportional to Λ2, and Z(s) is proportional to Λ2−2s for s > 1.
b) Z(1) = Z(1)

q is again given by Eq.(40); and so its cutoff dependence is
logarithmic.

6. Transforming The Action

In this section, we will try to address the following question: How does
one work with an action of the form given by Eq.(43), which is both explic-
itly cutoff dependent, and also formally non-renormalizable, since it contains
terms with more than two derivatives? Of course, here we have a somewhat
unusual situation; the effective action Se was gotten by doing a one loop
calculation, so one might think that the cutoff dependence could be elimi-
nated by introducing counter terms. These counter terms usually arise from
adding cutoff dependent pieces to the adjustable parameters (masses, cou-
pling constants) in the theory. The adjustable parameters in our problem are
α and g, and their dependence on the cutoff was already fixed by Eq.(15).
We recall that Eq.(15) was forced on us by requiring the invariance of the
original action under the scaling of the world sheet coordinates. We have also
stressed that scaling invariance follows from invariance under a special boost,
and it cannot be violated without breaking Lorentz invariance. Since there
is no freedom of tuning the cutoff dependence of α and g, one might consider
introducing φ dependent counter terms into Se to cancel, for example, the
cutoff dependent part of U . One must remember, however, that φ (or β2)
was a non-dynamical auxilliary field in the original action of Eq.(10), and the
dependence of the action on φ came from ∆S and it was completely fixed.
It has later acquired a kinetic energy term (Eq.(40)) from quantum effects
and as a result became dynamical. Therefore, given the initial action, the
φ dependence of Se is completely fixed. Towards the end of this section, we
will show that by suitably scaling both the world sheet coordinates and the
field φ, the action can be transformed into a form that is a suitable starting
point for a perturbation expansion.

A second problem is how to identify the set of observable Greens functions
required to be cutoff independent. We will make the reasonable assumption
that physics lies in the Lorentz invariant sector of the model, and therefore we
should only demand that Lorentz invariant Greens functions should be free
of the cutoff. We recall that, in contrast to the covariant approach to field
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theory, we do not here have manifest Lorentz invariance. In addition, the
cutoffs a and a′ (or Λ0,1) are not Lorentz scalars. In view of this, it is too much
to demand that all Greens functions be finite: The cutoff dependendence may
be an artifact due to non-covariance, and it may disappear from the Lorentz
invariant sector of the model.

This brings up the question of how to identify Lorentz invariant objects.
Investigation of full Lorentz invariance is a difficult task which will not be at-
tempted in this paper. Instead, we will construct Greens functions invariant
under a subgoup of the Lorentz group consisting of rotations in the trans-
verse directions and boost along the special light cone direction. As we have
stressed earlier, the special boost is realized as scaling of the world sheet co-
ordinates, and so we should be looking for scale invariant Greens functions.
These are easy to construct, for example, the composite fields

∫ p+

0
dσ
∫

dτ G(φ) (∂φ)2,
∫ p+

0
dσ
∫

dτ E(φ)∂q · ∂q, (44)

where G and E are arbitrary functions and ∂ is derivative with respect to σ
or τ , are scale invariant. The Greens functions constructed from the products
of these composite fields will also share this property. It is easy to construct
many more examples. Note that these examples are all non-local: Since the
world sheet coordinates transform under scaling, one has to integrate over
them to form scale invariant quantities.

We will now argue that scale invariant objects are also cutoff independent,
at least if we focus on power dependence and ignore logarithmic corrections.
This follows because the only parameter in the problem that scales non-
trivially is the cutoff Λ; under the scaling

σ → uσ, τ → uτ,

Λ transforms as
Λ → Λ/u.

Therefore, the scaling dimension of any dyanamical variable must solely come
from its dependence on the cutoff. For example, in the derivative expansion
of Eq.(43), the cutoff dependences of U and Z(s), given by Eq.(41), all follow
from their scaling dimensions. As a special case, scale invariance implies
cutoff independence.

The above discussion is incomplete in two important respects: First, it
was completely classical; for example, we ignored the logarithmic dependence
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of Z(1), which is purely quantum in origin. Also, we have so far only consid-
ered the contributions coming from integrating over q; we should also take
into account the contributions coming from integrating over φ, since the lat-
ter has become a full fledged dynamical field after the q integration. In the
next section, we will take care of these omissions by considering a perturba-
tion expansion, starting with Se. The expansion parameter will initially be
1/D, the natural small parameter in the large D limit, although it will be
replaced by a more appropriate one later on. In preparation for the perturba-
tion expansion, it is convenient to transform the action so that the free part
(mass and kinetic energy) does not depend on the cutoff or on D. We first
write φ as the sum of its expactation value φ0 and a fluctuating field which
we called χ in Eq.(38). In order not to complicate the notation, instead of
introducing a new field χ, we will simply make the replacement

φ→ φ0 + φ. (45)

After this replacement, we will rescale φ by

φ̄ = (D ln(Λ/µ))1/2 φ, (46)

and combine it with a change of the world sheet coordinates from σ, τ to σ̄, τ̄ :

σ̄ = Λ (ln(Λ/µ))−1/2 σ, τ̄ = Λ (ln(Λ/µ))−1/2 τ. (47)

After these transformations, Se can be written as

Se =
∫

dσ̄
∫

dτ̄

(

Ū(φ̄) +
∞
∑

1

Z̄(s)(φ̄) ∂2sφ̄

)

, (48)

where the barred and unbarred quantities are related by

Ū = Λ−2 ln(Λ/µ)U, Z̄(s) = Λ2s−2 (ln(Λ/µ))1−s Z(s). (49)

To see more clearly what this transformation has accomplished, it is useful
to expand the barred quantities in powers φ̄ by

Ū =
∞
∑

2

Ūn φ̄
n, Z̄(s) =

∞
∑

1

Z̄(s)
n φ̄n, (50)

and check the dependence of these terms on the cutoff and on D. Defining

t = ln(Λ/µ), (51)
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and combining the cutoff dependence given by Eqs.(41) and (42) with the
transformations described above, we see that

Ūn ∼ (D t)1−n/2, (52)

and,
Z̄(1)

n ∼ (D t)(1−n)/2, (53)

for s = 1 and
Z̄(s)

n ∼ (D t)(1−n)/2 t−s, (54)

for s > 1. The reason for a different dependence on t for s = 1 can be traced
back to Z(1), which is the only term in the expansion proportional to t.

From the above results, we see that:
a) There is no longer any dependence on powers of Λ in the new action. The
remaining cutoff dependence is purely logarithmic. One can directly see from
Eqs.(51-54) that the old cutoff Λ has been replaced by the new cutoff t.
b) The free part of the action, given by

S(0)
e =

∫ p+

0
dσ̄
∫

dτ̄
(

Ū2 φ̄
2 + Z̄1

1 φ̄ ∂
2φ̄
)

, (55)

is both cutoff and D independent. We recall that this was the main moti-
vation for transforming the action. Identifying D t with the wave function
renormalization constant, we note that the scaling of φ in Eq.(46) very much
looks like the standard wave function renormalization of field theory. There
is, however, an important difference: Wave function renormalization constant
normally looks like

Z ∼ 1 + e2 ln(Λ/µ),

whereas, with the identification e2 = 1/D, we have

Z ∼ e−2 ln(Λ/µ).

This is because, in our case, the kinetic energy term for φ is not present in
the original action, but it is generated at the level of one loop.
c) Examining Eqs.(52,53), we see that, instead of 1/

√
D, it is more natural

to identify
λ = 1/

√
D t (56)

as the parameter of the perturbation expansion. This can be made more
precise by defining λ by setting the coefficient of the term with s = 1, n = 2

22



equal to λ, so that, up to an irrelevant multiplicative constant, it appears in
the action in the form ∫

dσ
∫

dτ
(

λ φ̄2∂2φ̄
)

. (57)

With this new identification of the coupling constant, the convergence of
the expansion around the meanfield is no longer tied to the number of trans-
verse dimensions being large: λ could be small without D being large if Λ/µ
is large. Later on, we will see that one can identify λ as the running coupling
constant defined at scale µ. As µ → 0, the model tends towards a free field
theory. There are, however, obstacles in the infrared that prevent us from
reaching µ = 0. For one thing, we have decompactified the sigma coordinate
and replaced a discrete spectrum by a continuous one. This approximation,
valid in the ultraviolet region, breaks down when we approach the infrared.
In addition, there is a problem with a strongly coupled zero mode in the
spectrum [11]. Also, by just dimensional reasoning, the µ dependence of the
Z’s is given by

Z(s) ∼ µ2s−2

for s > 1, so there is a serious infrared divergence. All we can say is that,
as we reduce µ, at least for a while, λ tends to decrease. We will make this
point a bit more precise when we discuss the renormalization group.

Now we are ready to give at least a partial answer to the question posed
at the beginning of this section. We have constructed a new action, Eq.(48),
in which the original cutoff Λ is replaced by the logarithmic cutoff t. For
computing Lorentz and hence scale invariant quantities, it can be used in
place of the old action of Eq.(43), since the two are related by a scale trans-
formation. The free part of the action is cutoff independent, and the only
cutoff dependence appears in the interaction. If formally the limit t → ∞
is taken, the theory becomes free. Of course, one still have to deal with the
additional cutoff dependence coming from higher order terms, but at least,
there is now a satisfactory starting point, eq.(48), for doing the perturbation
expansion.

7. Perturbation Expansion And The Renormalization Group

Our first goal is to determine the dependence of the individual terms of
the perturbation expansion on the cutoff t for large t. Later we will use
the knowledge thus gained to introduce an approach to the problem based
on the renormalization group. We have already noted that, for large t, the
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expansion parameter λ is small, and so the perturbative treatment is justified.
The tool we will use to investigate the large t dependence is elementary power
counting. Let us first introduce a uniform notation for interaction vertices
by defining

W (0)
n = Ūn, W (s)

n = Z̄
(s)
n+1, s ≥ 1, n > 2.

The subscript n on W counts the number of lines meeting at the vertex, and
2s counts the total number of derivatives (momenta) associated with various
lines. The asymptotic t dependence of the W ’s can be read from Eqs.(52-54):

W (s)
n ∼ t(1−s−n/2+δ1,s). (58)

Now consider a contribution to the vertex W
(S)
E from a graph with E

external lines, I internal lines, V vertices and L loops (unconstrained mo-
menta). Very schematically, this graph can be represented as

W
(S)
E ∼

∫

√
t L
∏

i=1

d2ki

I
∏

j=1

(k2
j +M2)−1

V
∏

l,m=1

(

(kl)
2sl−2sm W (sl)

nl

)

, (59)

where, nl represents the number of lines entering the l’th vertex and 2sl the
number of momenta associated with that vertex. Of these momenta, 2sm

of them are associated with external lines and the rest with internal lines.
These quantities satisfy the following constraints:

V
∑

l=1

nl = E + 2I,
V
∑

m=1

sm = S, V = I − L+ 1. (60)

In writing Eq.(59), we have suppressed many details; for example, we have
not expressed kl’s, the momenta entering the vertices, as linear combinations
of the internal momenta ki. Also, Lorentz indices have been suppressed.
Since we are only interested in counting powers of t, these details do not
matter.

To find the large t behaviour of W
(S)
E , we use Eq.(58) for the W (s)

n ’s on
the right side, and also, we change variables by

ki →
√
t ki.

The result is

W
(S)
E ∼ tL−I

V
∏

l,m=1

t1−sm−nl/2+δsl,1 = tL−2I−S−E/2
V
∏

l=1

t1+δsl,1 , (61)
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where (60) was used in the second step. Clearly, the dominant contribution
comes from sl = 1, corresponding to vertices W (1)

n . Letting sl = 1 in the
above expression, and using V = I − L+ 1, we have,

W
(S)
E ∼ tL−2I−S+2V −E/2 = t−L−S−E/2+2. (62)

We see that one loop contribution, L = 1 dominates, and finally, the leading
t dependence is

W
(S)
E ∼ t1−S−E/2. (63)

But this is just this the original t dependence given by (58) for vertices with
S > 1. Therefore, higher order contributions do not change the power de-
pendence of vertices with S > 1, although they do contribute to the constant
multiplying this power. In the case of vertices with S = 1, the power given
by (63) is down by one unit compared to the original one (Eq.(58)), so in this
case there is no correction to the original dominant asymptotic behaviour.
To summarize:
a) For large t, the theory is weakly coupled, with the coupling constant λ
given by Eq.(56).
b) The t dependences of the vertices given by Eq.(58) are unchanged when
higher order perturbation results are taken into account.
c) Perturbatively, the vertices W (1)

n , with s = 1, dominate the large t be-
haviour; W ’s with s > 1 are negligible in comparison. We note that these
are the so called non-renormalizable interaction terms with more than two
derivatives. In fact, they are damped by inverse powers of t and are therefore
harmless.
d) The W ’s with s = 1 themselves receive no higher order corrections. These
vertices are therefore still given by Eq.(40): One has to expand the right
hand side of this equation in powers of φ about a non-zero field expectation
value.

We will now reexamine the results obtained so far from the point of view of
the renormalization group. The initial model was regulated by a grid on the
world sheet. The grid spacing, or equivalently, a corresponding momentum
cutoff Λ acted as the regulator. The basic idea of the renormalization group
is to lower the cutoff systematically by integrating over slices of momenta,
finally arriving at an effective action sensitive only to low values of momenta
(energy). Here, we can implement this idea as follows: We first start with a
very large cutoff Λ(0), and integrate over the modes between Λ(0) and Λ of
the field q, where the ratio Λ(0)/Λ is taken to be large. The result of this
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integration can be schemetically represented by

S(Λ0) = Sq(Λ) + Se(Λ
(0),Λ). (64)

In this equation, S(Λ(0)) stands for the original action, with the modes of the
field q cutoff at Λ(0). After integrating over the modes between Λ(0) and Λ,
and carrying out the large D expansion, as we have done in sections 3 to 5,
we end up with the two terms on the right hand side. The first term,

Sq(Λ) =
∫

dσ
∫

dτ
(

1

2
q′2 +

1

2
(φ0 + λφ̄) q̇2

)

E(Λ), (65)

is the original action for q, with, however, the cutoff reduced from Λ(0) to Λ.
Here E(Λ) is a projection operator which cuts off the modes of both q and
φ at Λ. Compared to Eq.(36), we have φ0 + λφ̄ in place of simply φ because
of the shift φ→ φ0 + φ (Eq.(45)), followed by the scaling φ = λφ̄ (Eq.(46)).

The second term on the right side of the equation is the action for φ,
generated by the integration over the modes of q between Λ(0) and Λ. This
term can again be expanded as in Eq.(43). The only difference is in the
cutoffs used in computing it: The ultraviolet cutoff is now Λ(0) and the
infrared cutoff is Λ. If the transformation to the barred variables is carried
out, everything works out the same as before, with the exception that, t is
now replaced by

t→ ln(Λ(0)/Λ).

The reason for starting with an initial cutoff Λ(0) instead of immediately
with Λ is the following: The field φ did not have a kinetic energy term in
the initial action, and such a term is needed in order to be able to integrate
perturbatively over this field. Integrating only over the modes of q from Λ(0)

to Λ initially generates the needed kinetic energy term. The ratio Λ(0)/Λ is
taken to be large so that the coupling constant is small and therefore pertur-
bation expansion is valid. Once the kinetic energy term for φ is generated,
one can take S(Λ(0)) as the starting point of the renormalization group analy-
sis. Having reduced the cutoff from Λ(0) to Λ, Λ becomes the new ultraviolet
cutoff. We can continue reducing Λ further by integrating over the modes
of both q and φ together till we reach a much lower scale µ. Following the
conventional treatment, this can be done in infinitesimal steps, and a set of
coupled differential equations for the W ’s can be derived. However, here the
situation is much simpler; we can dispense with this elaborate machinery, re-
lying instead on the results from perturbation theory, summarized following
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Eq.(63). As we keep on reducing Λ by integrating over the modes of q and
φ̄, the coupling constant λ is still given by Eq.(56), with the only difference
that the definition of t keeps changing. If Λ is reduced to a new value µ, the
corresponding t is given by

t→ ln(Λ(0)/µ).

This is because to the leading order in t, λ receives no contribution from
the integration over the modes φ̄ (see item d) of the summary following
Eq.(63)). The only contribution comes from the integration over the modes
of q, and that simply changes the lower cutoff in Eq.(51) from Λ to µ. As
a consequence, the coupling constant runs towards zero as the lower cutoff
tends to zero, and the model appears to flow towards a free theory in the
infrared. Of course, we pointed out at the end of section 6, as µ gets small, at
some point the approximations we are making are no longer valid. It is very
likely that at some value of µ, the coupling constant λ reaches a minimum,
and as µ is decreased further, it starts growing. The theory then becomes
strongly coupled, and the mean field method, based on the expansion in λ,
breaks down.

All this is telling us that the mean field approximation is good when
applied to highly excited states of the string, but it breaks down when applied
to the lower lying spectrum. One can therefore trust it for computing the
asymptotic slope, but not for computing, for example, the intercept. To see
this more clearly, instead of letting µ → 0, we can let Λ → ∞, while still
keeping µ large. In this limit, λ again tends to zero, the fluctuations of the
string slope tend to die out, and to a good approximation, we get a free string
with a fixed slope. We note that in the light cone variables we have chosen,
µp+ corresponds to the square of the total momentum. Therefore, at large
µ, we are probing the higher excitations of the string, with the square of the
mass of the order of µp+ or larger. It is only in this regime that we can trust
the perturbation expansion, and the resulting picture of formation of a free
string.

8. Conclusions And Open Problems

In the present paper, we continued earlier work on the world sheet ap-
proach to field theory and the mean field calculations based on it. In par-
ticular, we focused on the cutoffs needed for the world sheet set up, and we
investigated possible cutoff dependences of various results based on the mean
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field method. We showed that after integrating over the target space field
q, a new field φ was dynamically generated, with a generalized sigma model
for its action. This action was explicitly cutoff dependent; however, after a
simple transformation, all the cutoff dependence could be absorbed into the
definition of a running coupling constant. An argument based on the idea
of the renormalization group was used to show that, as the cutoff was low-
ered, the coupling constant approached zero, and the model tended towards
a free string. We argued, however, that because of various infrared problems,
it was not possible to really reach this limit. Nevertheless, by keeping the
cutoff sufficiently large, we could still obtain useful information about the
ultraviolet behaviour of the model: For example, one could conclude that
the higher exited modes were indeed described by a free string. We consider
this as the main result of the present work.

Many problems, some of them listed at the beginning of the introduction,
such as full Lorentz invariance, still remain open. Another problem, brought
to light here, is the likely breakdown of the mean field expansion for the
low lying states of the string. It would be very desirable to find a way of
extending the mean field method, so that, for example, the string intercept
could be reliably determined.
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